

JBF-003-1151003

Seat No.

M. Sc. (ELE) (Sem. I) (CBCS) (W.E.F.-2016) Examination

December - 2019

Paper - 03: Electromagnetics

(New Syllabus)

Faculty Code: 003

Subject Code: 1151003

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70

- 1 Answer the following questions in brief: (any seven) 14
 - (1) Define Collinear vectors.
 - (2) Define Co-terminus vectors.
 - (3) What is displacement vector?
 - (4) What is electromagnetic radiation?
 - (5) Write the applications of Coulomb's law.
 - (6) Define electric field.
 - (7) What is potential?
 - (8) Define equipotential surface.
 - (9) Define steady magnetic field.
 - (10) Write the statement of Ampere's work law.
- 2 Attempt any two of the following questions: 14
 - (1) Derive the equation $E = \frac{\rho_L}{2 \prod \epsilon_0 \rho} a_\rho$ of electric field 7 strength due to infinite line charge.
 - (2) Explain cross product of two vectors, graphical 7 representation for cross product of two vectors and cross product in component form.
 - (3) Explain electric field strength due to point charge and also write salient features of electric intensity.

3 Answer the following questions:

7

14

- (1) Derive the equation $E = \frac{\rho_S}{2 \in_0} a_n$ for field due to surface charge density.
- (2) Derive the equation $V = \frac{Qd \cos \theta}{2\Pi \in_0 r^2}$ for potential due 7 to electric dipole.

OR

3 Answer the following questions:

- 14
- (1) Write a note on Gauss's law and its applications.
- 7 7
- (2) Explain boundary conditions on E and D and also prove the boundary conditions.
 - 14

- 4 Answer the following questions:
 - (1) Derive the equation $E = \frac{p}{4\Pi \in_0 r^2} \left(2\cos\theta \ a_r + \sin\theta \ a_\theta \right)$ 7
 - of electric field due to dipole.
 - (2) Write the procedure for Faraday's experiment to define flux.
- 5 Answer any two of the following questions: 14
 - (1) Explain capacitance of parallel plate capacitor and capacitance between two concentric spheres with derivation of relevant equations.
 - (2) Derive the equation $H = \frac{I}{4 \Pi R} \int_{\alpha_2}^{\alpha_1} \sin \alpha \ d\alpha \ a_{\phi} = \frac{1}{4 \Pi R}$ 7 $\left[\cos \alpha_2 \cos \alpha_1\right] a_{\phi}$ for field due to a finite current element.
 - (3) Explain Ampere's circuit law and derive the equation $\oint H.dL = I_{enc}.$
 - (4) Derive the equation $H = \frac{I}{2 \pi \rho} a_{\phi}$ for field due to infinity 7 long current element.